Ch 7 in Wooldridge“Multiple Regression Analysis with Qualitative Information:

Binary (or Dummy) Variables”

Read Section 7.1

Use data in “W_wagel.dta” to estimate the following equation by OLS:

wage = B, + 8, female + B,educ + u. (7.9)

Read Section 7.2: What is the following equal to? Why?

E(wage|female = 1,educ) — E(wage|female = 0,educ).

wage = —1.57 — 181 female + 572 educ

(0.72) (0.26) (.049)
+ 025 exper + 141 tenure
(.012) .021) o

n =526, R* = 364.

Read the explanations to Example 7.1

Read “Interpreting Coefficients on Dummy Explanatory Variables When the Dependent Variable Is
log(y)”



EXAMPLE 7 .5
(Log Hourly Wage Equation)

Let us reestimate the wage equation from Example 7.1, using log(wage) as the dependent
variable and adding quadratics in exper and tenure:

log(wage) = 417 — .297 female + .080 educ + .029 exper

(.099) (.036) (.007) (.005)
— .00058 exper? + .032 tenure — .00059 tenure® 2.9)
(.00010) (.007) (.00023) :

n = 526, R* = 441.

Using the same approximation as in Example 7.4, the coefficient on female implies that,
for the same levels of educ, exper, and tenure, women earn about 100(.297) = 29.7%
less than men. We can do better than this by computing the exact percentage difference
in predicted wages. What we want is the proportionate difference in wages between
females and males, holding other factors fixed: (wage; — wageu)/wdage,,. What we have
from (7.9) is

logzwage,;) — logfwageM) = —.297.
Exponentiating and subtracting one gives
(wage. — wage,,)/wagey, = exp(—.297) — 1 = —.257.

This more accurate estimate implies that a woman’s wage is, on average, 25.7% below a
comparable man’s wage.

Read Section 7.3:

What is a “base group” or a “base category”?

|II

What is an “ordinal” variable?

** Use “W_lawsch85” data to estimate the equation in the Example 7.8:
Two alternative specifications:

1) Use “rank” as a single variable

2) Create “rank dummies”

EX A MPLE 7 .8
(Effects of Law School Rankings on Starting Salaries)

Define the dummy variables top10, r11_25, r26_40, r41_60, r61_100 to take on the value
unity when the variable rank falls into the appropriate range. We let schools ranked below
100 be the base group. The estimated equation is



log(salary) = 9.17 + .700 topl10 + 594 r11_25 + 375 r26_40
041) (.053) (.039) (.034)

+ .263 r41_60 + .132 r61_100 + .0057 LSAT
(.028) (.021) (.0031)

+ .014 GPA + .036 log(libvol) + 0008 log(cost)
(.074) (.026) (.0251)

n =136, R*= 911, R* = .905.

(7.13)

We see immediately that all of the dummy variables defining the different ranks are very
statistically significant. The estirmate on r61_100 means that, holding LSAT, GPA, libvol, and
cost fixed, the median salary at a law school ranked between 61 and 100 is about 13.2%
higher than that at a law school ranked below 100. The difference between a top 10 school
and a below 100 school is quite large. Using the exact calculation given in equation (7.10)
gives exp(.700) — 1 = 1.014, and so the predicted median salary is more than 100% higher
at a top 10 school than it is at a below 100 school.

As an indication of whether breaking the rank into different groups is an improvement,
we can compare the adjusted R-squared in (7.13) with the adjusted R-squared from includ-
ing rank as a single variable: the former is .905 and the latter is .836, so the additional flex-
ibility of (7.13) is warranted.

Interestingly, once the rank is put into the (admittedly somewhat arbitrary) given cate-
gories, all of the other variables become insignificant. In fact, a test for joint significance of
LSAT, GPA, log(libvol), and log(cost) gives a p-value of .055, which is borderline significant.
When rank is included in its original form, the p-value for joint significance is zero to four
decimal places.



Section 7.4 Interactions Involving Dummy Variables

Interactions Among Dummy Variables

Allowing for Different Slopes

EXAMPLE 7.10
{Log Hourly Wage Equation)

logiwage) = 380 — 227 female + 082 educ

(.119) (.168) (.008)
— 0056 female-educ + 029 exper — 000358 exper’
(.0131) (.005) (.00011) (7.48)
+ 032 tenure — 00059 tenure® :
007) (.00024)
n =526, R*= 441.

The estimated return to education for men in this equation is .082, or 8.2%. For wommen,
it is .082 — .0056 = .0764, or about 7.6%. The difference, —.56%, or just over one-half
a percentage point less for women, s not economically large nor statistically significant: the
t statistic is —_0056/.0131 = —_.43. Thus, we condude that there is no evidence against the
hypothesis that the return to education is the same for men and women.

The coefficent on female, while remaining economically large, is no longer significant
at conventional levels (t = —1.35). Its coefficient and t statistic in the equation without
the interaction were —.297 and —8.25, respectively [see equation (7.9)]. Should we now
conclude that there 5 no statistically significant evidence of lower pay for women at the
same levek of educ, exper, and tenure? This would be a serious error. Since we have
added the interaction female-educ to the equation, the coefficient on femnale is now esti-
mated much less precsely than it was in equation (7.9): the standard error has increased
by almost five-fold (.168/.036 = 4.67). The reason for this is that female and female-educ
are highly correlated in the sample. In this example, there & a useful way to think about
the multicollinearity: in equation (7.17) and the more general equation estimated in
(7.18), &, measures the wage differential between women and men when educ = 0. As
there is no one in the sample with even dose to zero years of education, it is not surpris-
ing that we have a difficult time estimating the differential at educ = 0 (nor is the differ-
ential at zero years of education very informative). More interesting would be to estimate
the gender differential at, say, the average education level in the sample (about 12.5).
To do this, we would replace female-educ with female-leduc — 12.5) and rerun the
regression; this only changes the coefficient on fermale and its standard error. (See Exer-
cise 7.15.)

f we compute the F statistic for Hy: 8, = 0, 8, = 0, we obtain F = 34.33, whichis a
huge value for an F random varnable with numerator of = 2 and denominator df = 518:
the pvalue & zero to four deamal places. In the end, we prefer model (7.9), which allows
for a constant wage differential between wormen and men.



7.12 Use the data in GPA2 RAW for this exercise.
(i) Consider the equation
colgpa = By + Brhsize + Bohsize® + Bshsperc + Bysat
+ Befemale + Beathlete + u,
where colgpa is cumulative college grade point average, hsize is size of
high school graduating class. in hundreds, hsperc is academic percentile
in graduating class, saf is combined SAT score, female 1s a binary gen-
der vanable. and athlete is a binary vanable, which is one for student-
athletes. What are your expectations for the cocfficients in this
equation? Which ones are you unsure about?

(i1) Estimate the equation in part (1) and report the results in the usual form.
What is the estimated GPA differcntial between athletes and nonath-
letes? Is it statistically significant?

(i11) Drop sar from the model and reestimate the equation. Now what is the
estimated effect of being an athlete? Discuss why the estimate is differ-
ent than that obtained in part (i1).

(iv) In the model from part (1), allow the effect of being an athlete to differ
by gender and test the null hypothesis that there 1s no ceteris panbus
difference between women athletes and women nonathletes.

(v) Does the effect of sat on colgpa differ by gender? Justify your answer.

7.15 Use the data in WAGE1.RAW for this exercise.

(i) Use equation (7.18) to estimate the gender differential when educ =
12.5. Compare this with the estimated differential when educ = 0.

(i1) Run the regression used to obtain (7.18), but with female -(educ — 12.5)
replacing female-educ. How do you intepret the cocfficient on female
now?

(1) Is the coefficient on female in part (i) statistically significant? Compare
this with (7.18) and comment.



Testing for Differences in Regression Functions Across Groups

Read the text.

Use the data in “W_gpa3.dta” to estimate equation (7.20).
Test the hypothesis in equation (7.21).
Examine the F-test in equation (7.24)

What is a Chow test? How is it applied? How is is different from the F-test that we used before?

Section 7.5 A Binary Dependent Variable: The Linear Probability Model

Now suppose that the dependent variable has a qualitative meaning (rather than a quantitative
meaning).

Consider the case of the binary outcome.
Why is P(y=1|x) = E(y|x) in equation (7.27) ?
p()’ = IIX) - ﬁo S r ﬂ]."] S e kak' (1.”)

AP(V = ll.l’) = ﬁjAIj. (7.”)

What is the main advantage of the linear probability model?

What is the main disadvantage of the linear probability model?

Use “W_mroz.dta” to estimate equation (7.29).

Use “W_crimel.dta” to estimate equation (7.31).



