Sources:

1) CT MUS (Cameron and Trivedi, Microeconometrics Using Stata)

2) CT (Cameron and Trivedi, Microeconometrics)

3) Wooldridge-Introductory Econometrics

Reading data into Stata and examining data

From CT MUS (Cameron and Trivedi, Microeconometrics Using Stata)

. % Variable description for medical expenditure dataset
. use mus03data.dta
. describe totexp ltotexp posexp suppins phylim actlim totchr age female income

desc

gen Itot =In(totexp)

summarize (can be abbreviated as ‘sum’; for example: ‘sum posexp’)
summarize p*

listif in 1/10, clean

list suppins phylim

tabulate (can be abbreviated as ‘tab’: for example: ‘tab posexp’)
tab income if income<=0

sum totexp, detail

table female totchr

table female totchr suppins

tabulate female suppins, row col

table female, contents(N totchr mean totchr sd totchr p50 totchr)

table female suppins, contents(N totchr mean totchr sd totchr p50 totchr)
tabstat totexp Itotexp, stat (count mean)

tabstat totexp Itotexp, stat (count mean) col(stat)



Notation and Conventions (from CT)

1.6. Notation and Conventions

Vector and matrix algebra are used extensively.

Vectors are defined as column vectors and represented using lowercase bold. For
example. for linear regression the regressor vector xisa K x | column vector with jth
entry x; and the parameter vector 3 is a K x 1 column vector with jth entry f;, so

x1 il
x = : and 3 = :

(Kx1) | g (Kx) | g

Then the linear regression model v = f1x; 4 faxs 4 -+« 4 By xx + u is expressed as
v = X'3 4+ u. At times a subscript { is added to denote the typical ith observation. The
linear regression equation for the ith observation is then

¥i = X8 +u;.

The sample is one of N observations, {(v;.X;),i = 1,..., N]. In this book observa-
tions are usually assumed to be independent over i.

Matrices are represented using uppercase bold. In matrix notation the sample is
(y.X), where y is an N x | vector with ith entry y; and X is a matrix with ith row x;,

I T N |

NxD | N x dimx) |y |

The linear regression model upon stacking all N observations is then
y=X3+u,

where uis an N x | column vector with ith entry u;.

Matrix notation is compact but at times it is clearer to write products of matrices
as summations of products of vectors. For example, the OLS estimator can be equiva-
lently written in either of the following ways:

N -1 N
B=(XX)'x =(Zx;x£) Y xini-
=1

i=1

Generic notation for a parameter is the ¢ x | vector 8. The regression parameters
are represented by the K x | vector 3, which may equal € or may be a subset of
depending on the context.



Linear Regression (Ch 3 in in CT MUS)

3.3.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let
denote the vector of parameters to be estimated, and let 8 denote an estimator of 6.
Ideally, the distribution of @ is centered on @ with small variance, for precision, and a
known distribution, to permit statistical inference. We restrict analysis to estimators
that are consistent for 8, meaning that in infinitely large samples, 0 equals @ aside
from negligible random variation. This is denoted by 6 % 6 or more formally by R
8y, where 8 denotes the unknown “true” parameter value. A necessary condition for
consistency is correct model specification or, in some leading cases, correct specification
of key components of the model, most notably the conditional mean.

Under additional assumptions, the estimators considered in this book are asymptot-
ically normally distributed, meaning that their distribution is well approximated by the
multivariate normal in large samples. This is denoted by

0 & N{8, Var(8)}

where Var(8) denotes the (asymptotic) variance—covariance matrix of the estimator
(VOE). More efficient estimators have smaller VCEs. The VCE depends on unknown
parameters, so we use an estimate of the VCE, denoted by V'(9). Standard errors of the

o~

parameter estimates are obtained as the square root of diagonal entries in V(8). Differ-
ent assumptions about the data-generating process (DGP), such as heteroskedasticity,
can lead to different estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard
normal distribution and chi~squared distribution to compute critical values and p-values.
For some estimators, notably, the OLS estimator, tests are instead based on the ¢ dis-
tribution and the F distribution. This makes essentially no difference in large samples
with, say, degrees of freedom greater than 100, but it may provide a better approxima-
tion in smaller samples.



3.3.2 OLS regression and matrix algebra
The goal of linear regression is to estimate the parameters of the linear conditional mean
Blylx) =x'8 = fiz1 + Paz2 + -+ + OxTx (3.1)

where usually an intercept is included so that z; = 1. Here x is a K x 1 column vector
with the jth entry—the jth regressor z;—and 8 is a K x 1 column vector with the jth
entry £;.

Sometimes E(y|x) is of direct interest for prediction. More often, however, econo-
metrics studies are interested in one or more of the associated marginal effects (MEs),

OE(yx) _

oz 5 ﬁj

for the jth regressor. For example, we are interested in the marginal effect of supple-
mentary private health insurance on medical expenditures. An attraction of the linear
model is that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive error so that, for the typical ith
observation, '
y=x0+ u, t=1,...,N

The OLS estimator minimizes the sum of squared errors, 3 iv., (3 — X.8)>.

Matrix notation provides a compact way to represent the estimator and variance
matrix formulas that involve sums of products and cross products. We define the N x 1

column vector y to nave the ith entry y;, and we define the NV x K regressor matrix X
to have the ith row x}. Then the OLS estimator can be written in several ways, with

B=(X'X)"'"Xy

N A L
- Zi:l KX, Zi:l XY
N 2 N N -1
> im1 T D=1 T2 2ic1 TUT K Eﬁ_l T1:Yi
N N . N '
B D DAY 2T TR e 3 : 2i=1 T2l
N ) N N
D iz TRiTL e D i ;z;%{' Y oiny TxCiYi

(Vectors are defined as column vectors here.)



3.3.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGP. For
the linear regression model, this reduces to assumptions about the regression error u;.

The starting point for analysis is to assume that u; satisfies the following classical
conditions:

1. B(u|x;) = 0 (exogeneity of regressors)
2. B(u?|x;) = ¢ (conditional homoskedasticity)

3. Euitj]x;,x;) = 0, i # j, (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of 8 and implies that the condi-
tional mean given in (3.1) is correctly specified. This means that the conditional mean is
linear and that all relevant variables have been included in the regression. Assumption 1
is relaxed in chapier 6.

__ Assumptions 2 and 3 determine the form of the VCE of ,@ Assumptions 1-3 lead to
B being asymptotically normally distributed with the default estimator of the VCE

I?default(a) = SQ(XIX) -

where
‘ FS=(N=-K> 8 (3.2)

and %; = y; — x’ﬁ Under assumptions 1-3, the OLS estimator is fully efficient. If,
additionally, u, is normally distributed, then “¢ statistics” are exactly ¢ distributed. This

fourth assumption is not made, but it is common to continue to use the ¢ distribution
in the hope that it provides a better approximation than the standard normal in finite
samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 5,
we present examples of more-efficient feasible generalized least-squares (FGLS) estima-
tion. In the current chapter, we continue to use the OLS estimator, as is often done in
practice, but we use alternative estimates of the VCE that are valid when assumption
2, assurnption 3, or both are relaxed.

3.3.4 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3,vbut not 2, we have heteroskedastic uncorrelated errors.
Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the
VCE of the OLS estimator is

Frama(B) = (%) = 7 32, Tt (%) 339

For cross-section data that are independent, this estimator, introduced by White (1980),
has supplanted the default variance matrix estimate in most applied work because het-
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect.



3.3.5 Cluster—robust standard errors

When errors for different observations are correlated, assumption 3 is violated. Then
both default and robust estimates of the VCE are invalid. For time-series data, this is
the case if errors are serially correlated, and the newey command should be used. For
cross-section data, this can arise when errors are clustered.

Clustered or grouped errors are errors that are correlated within a cluster or group
and are uncorrelated across clusters. A simple example of clustering arises when sam-
pling is of independent units but errors for individuals within the unit are correlated.
For example, 100 independent villages may be sampled, with several people from each
village surveyed. Then, if a regression model overpredicts y for one village member,
it is likely to overpredict for other members of the same village, indicating positive
correlation. Similar comments apply when sampling is of households with several indi-
viduals in each household. Another leading example is panel data with independence

over individuals but with correlation over time for a given individual.

Given asswmption 1, but not 2 or 3, a cluster-robust estimator of the VCE of the
OLS estimator is

Petuseer (B) = (X'X) -1( — N kZ MQ“’QX’Q) (X'x)

where g = 1,...,G denotes the cluster (such as village), U, is the vector of residuals
for the observations in the gth cluster, and X, is a matrix of the regressors for the
observations'in the gth cluster. The key assumptions made are error independence
across clusters and that the number of clusters G — oo.

Cluster-robust standard errors can be computed by using the vce(cluster clust-
var) option in Stata, where clusters are defined by the different values taken by the
clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and
cluster—robust, because there is no restriction on Cov{ugi,ug;). -The cluster VCE esti-
mate can be applied to many estimators and models; see section 9.6.

Cluster—-robust standard errors must be used when data are clustered. For a scalar
regressor z, a rule of thumb is that cluster-robust standard errors are /1 + pzp,. (M — 1)
times the incorrect default standard errors, where p, is the within-cluster correlation
coefficient of the regressor, p, is the within-cluster correlation coefficient of the error,
and M is the average cluster size.

It can be necessary to use cluster—robust standard errors even where it is not im-
mediately obvious. This is particularly the case when a regressor is an aggregated or
macro variable, because then p, = 1. For example, suppose we use data from the U.S.
Current Population Survey and regress individual earnings on individual characteristics
and a state-level regressor that does not vary within a state. Then, if there are many
individuals in each state so M is large, even slight error correlation for individuals
in the same state can lead to great downward bias in default standard errors and in
heteroskedasticity-robust standard errors. Clustering can also be induced by the design
of sample surveys. This topic is pursued in section 5.5.



3.3.6 Regression in logs

The medical expenditure data are very right-skewed. Then a linear model in levels can
provide very poor predictions because it restricts the effects of regressors to be additive.
For example, aging 10 years is assumed to increase medical expenditures by the same
amount regardless of observed health status. Instead, it is more reasonable to assume
that aging 10 years has a multiplicative effect. For example, it may increase medical
expenditures by 20%. :

We begin with an exponential mean model for positive expenditures, with error
that is also multiplicative, so y; = exp(xiB)s;. Defining ; = exp(u;), we have y; =

exp(x;3 + u;), and taking the natural logarithm, we fit the log-linear model

Iny; =x/8+ w

by OLS regression of Iny on x. The conditional mean of Iny is being modeled, rather
than the conditional mean of y. In particular,

E{lny|x) =x'8

assuming u; is independent with conditional mean zero.

Parameter interpretation requires care. For regression of Iny on x, the coefficient 3;
measures the effect of a change in regressor z; on E(lny|x), but ultimate interest lies
instead on the effect on F(y|x). Some algebra shows that 3; measures the proportionate
change in E(y|x) as z; changes, called a semielasticity, rather than the level of change
in E(y|x). For example, if §; = 0.02, then a one-unit change in z; is associated with a
proportionate increase of 0.02, or 2%, in E(y|x).

3.4.2 The regress command

The regress command performs OLS regression and yields an analysis-of-variance table,
goodness-of-fit statistics, coefficient estimates, standard errors, ¢ statistics, p-values, and

confidence intervals. The syntax of the command is

regress depvar [indepuars] [if ] [in] [weight] [, options |

Other Stata estimation commands have similar syntaxes. The output from regress

is similar to that from many linear regression packages.

rrrkkkkkkkk Run the following regression in Stata: **xrskkkkbik

reg ltotexp suppins phylim actlim totchr age female income, robust

The regressors are jointly statistically significant, because the overall F' statistic of
126.97 has a p-value of 0.000. At the same timé, much of the variation is unexplained
with R? = 0.2289. The root MSE statistic reports s, the standard error of the regression,
defined in (3.2). By using a two-sided test at level 0.05, all regressors are individually
statistically significant because p < 0.05, aside from age and female. The strong
statistical insignificance of age may be due to sample restriction to elderly people and
the inclusion of several health-status measures that capture well the health effect of age.



Statistical significance of coefficients is easily established. More important is the eco-
nomic significance of coefficients, meaning the measured impact of regressors on medical
expenditures. This is straightforward for regression in levels, because we can directly
use the estimated coefficients. But here the regression is in logs. From section 3.3.6, in
the log-linear model, parameters need to be interpreted as semielasticities. For examrple,
the coefficient on suppins is 0.256. This means that private supplementary insurance
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures.
Similarly, large effects are obtained for the health-status measures, whereas health ex-
penditures for women are 8.4% lower than those for men after controlling for other
characteristics. The income coefficient of 0.0025 suggests a very small effect, but this
is misleading. The standard deviation of income is 22, so a 1-standard deviation in
income leads to 2 0.055 proportionate rise, or 5.5% rise, in medical expenditures.

MEs in nonlinear models are discussed in more detail in section 10.6. The preceding
interpretations are based on calculus methods that consider very small changes in the
regressor. For larger changes in the regressor, the finite-difference method is more
appropriate. Then the interpretation in the log-linear model is similar to that for the
exponential conditional mean model; see section 10.6.4. For example, the estimated
effect of going from no supplementary insurance (suppins=0) to having supplementary
insurance (suppims=1) is more precisely a 100 x (e%2%¢ — 1), or 29.2%, rise.

The regress command provides additional results that are not listed. In particular,
the estimate of the VCE is stored in the matrix e{V). Ways to access this and other
stored results from regression have been given in section 1.6. Various postestimation
commands enable prediction, computation of residuals, hypothesis testing, and model
specification tests. Many of these are illustrated in subsequent sections. Two useful
commands are

. * Display stored results and list available postestimation commands
. ereturn list

{output omitted)
. help regress postestimation
{output omitted )

3.4.3 Hypothesis tests

The test command performs hypothesis tests using the Wald test procedure that uses
the estimated model coefficients and VCE. We present some leading examples here, with
a more extensive discussion deferred to section 12.3. The F statistic version of the Wald
test is used after regress, whereas for many other estimators the chi-squared version
is instead used.

A common test is one of equality of coefficients. For example, consider testing that
having a functional limitation has the same impact on medical expenditures as having
an activity limitation. The test of Ho: Bpnylin = Bacerin 2g2INSE Hy: Bobyrin 7 Bactlin 18
implemented as

test phylim = actlim

Because p = 0.61 > 0.05, we do not reject the null hypothesis at the 5% significance

level. There is no statistically significant difference between the coefficients of the two
variables.



Another common test is one of the joint statistical significance of a subset of the
regressors. A test of the joint significance of the health-status measures is one of Hy:

Bonyrtn = 0, Pactiin = 0, Brotenr = 0 against H, : at least one is nonzero. This is
implemented as

. % Joint test of statistical sigmificance of several variables
. test phylim actlim totchr

(1) phylim = 0
(2) actlim = 0
( 3) totchr =0
F( 3, 2947) 272.386
Prob > F 0.0000

- 4 B

These three variables are jointly statistically significant at the 0.05 level because p =

0.000 < 0.05.

3.4.4 Tables of output from several regressions

It is very useful to be able to tabulate key results from multiple regressions for both
one’s own analysis and final report writing.

The estimates store command after regression leads to results in e() being as-
sociated with a user-provided model name and preserved even if subsequent models
are fitted. Given one or more such sets of stored estimates, estimates table presents
a table of regression coefficients {the default) and, optionally, additional results. The
estimates stats conumand lists the sample size and several likelihood-based statistics.

‘We compare the original regression model with-a variant that replaces income with
educyr. The example uses several of the available options for estimates table.

. % Store and then tabulate results from multiple regressions ‘
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. estimates store REGL

. quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vee(robust) :

. estimates store REG2

. estimates table REG1 REG2, b{(%9.4f) se stats(N r2 F 11)
> keep(suppins income educyr)

Variable REG1 REG2
suppins 0.2556 0.2063
0.0466 0.0471
income 0.0025
0.0010
educyr 0.0480
0.0070C

N | 2955.0000 2955.0000
r2 0.2289 0.2406
F 126.9723 132.5337
11 | -4.73e+03  -4.71e+03

legend: b/se



3.6 Prediction

For the linear regression rodel, the estimator of the conditional mean of y given x = X,

E(ylxp) = x3,3, is the conditional predictor ¥ = x;ﬁ ‘We focus here on prediction for

each observation in the sample. We begin with prediction from & linear model for medical
* expenditures, because this is straightforward, before turning to the log-linear model.

3.6.1 In-sample prediction

The most common type of prediction is in-sample, where evaluation is at the observed
regressor values for each observation. Then 7 = x,B predicts E(yi|x;) fori=1,...,N.

To do this, we use predict after regress. The syntax for predict is

predict [type| newvar [if] [in] [, options

The user always provides a name for the created variable, newvar. The default option is
the prediction §;. Other options yield residuals (usual, standaxrdized, and studentized),
several leverage and influential observation measures, predicted values, and associated
standard errors of prediction. We have already used some of these options in section 3.5.
The predict command can also be used for out-of-sample prediction. When used for
in-sample prediction, it is good practice to add the if e(sample) qualifier, because this
ensures that prediction is for the same sample as that used in estimation.

We consider prediction based on a linear regression model in levels rather than logs.
We begin by reporting the regression results with totexp as the dependent variable.

. * Change dependent variable to level of positive medical expenditures
. use mus03data.dta, clear

. keep if totexp > O

(109 observations deleted)



. regress totexp suppimz phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs = 2955
F(O 7, 2947) = 40.58
Prob > F = 0.0000
R-s3quared = 0.1163
Root MSE = 11285
Robust
totexp Coef. Std. Frr. t P>it] [95% Conf. Intervall
supping 724.8632  427.3045 1.70  0.090 -112,9824 1562.709
phylim 2389.019  544.3493 4.39 0.000 1321.675 3456.362
actlim 3900.491 705.2244 5.53° 0.000 2517.708 5283.273
totchr 1844 .377 186.8938 9.87 0.000 1477.921 2210,832
age -85.36264  37.81868 ~2.26 0.024 -159.5163 -11.20892
female -1383.29  432.4759 -3.20 0.001 -2231.275  -535.3044
incoma 6.46894 8.570658 0.75 0.450 ~10.33614 23.27402
_cons 8358.954  2847.802 2.94 0.003 2775.07 13942.84
We then predict the level of medical expenditures:
. * Prediction in model linear in levels
. predict yhatlevels
(option xb assumed; fitted values)
. summarize totexp yhatlevels
Variable | Obs Mean Std. Dev. Min Max
totexp 2955 7290.235 11990.84 3 125610
yhatlevels 2055 7290.235 4089.624 -236.3781 22559

The summary statistics show that on average the predicted value yhatlevels equals
the dependent variable. This suggests that the predictor does a good job. But this is
misleading because this is always the case after OLS regression in a model with an inter-
cept, since then residuals sum to zero implying S v; = Y. %;. The standard deviation
of yhatlevels is $4,090, so there is some variation in the predicted values.

For this example, a more discriminating test is to compare the median predicted

and actual values. We have

. * Compare median prediction and median actual value

. tabstat totexp yhatlevels, stat (count pS0) col(stat)

variable N P50
totexp 2955 3334
yhatlevels 2055 6464.692

There is considerable difference between the two, & consequence of the right-skewness
of the original data, which the linear regression model does not capture.

The stdp option provides the standard error of the prediction, and the stdf option
provides the standard error of the prediction for each sample observation, provided the



original estimation command used the default VCE. We therefore reestimate without
vee(robust) and use predict to obtain

. * Compute standard errors of prediction and forecast with default VCE
. quietly regress totexp suppins phylim actlim totchr age female income

. predict yhatstdp, stdp ..
. predict yhatstdf, stdf
. summarize yhatstdp yhatstdf

Variable | Obs Mean Std. Dev. Min Max
vhatstdp 2955 572.7 129.6575 393.5364 2813.983
yhatstdf 2955 11300.52 10.50946 11292.12 11630.8

The first quantity views xiB as an estimate of the conditional mean x!3 and is quite
precisely estimated because the average standard deviation is $573 compared with an
average prediction of $7,290. The second quantity views x;3 as an estimate of the actual
value y; and is very imprecisely estimated because v; = x.8 + u;, and the error u; here
has relatively large variance since the levels equation has 5 = 11285.

More generally, microéconometric models predict poorly for a given individual, as
evidenced by the typically low values of R obtained from regression on cross-section
data. These same models may nonetheless predict the conditional mean well, and it is
this latter quantity that is needed for policy analysis that focuses on average behavior.

3.6.2 Marginal effects

The mfx postestimation command calculates MEs and elasticities evaluated at sample
means, along with associated standard errors and confidence intervals where relevant.
The default is to obtain these for the quantity that is the default for predict. For
many estimation commands, including regress, this is the conditional mean. Then
mfx computes for each continuous regressor dE(y|x)/0z, and for 0/1 indicator variables
AE(y|x), evaluated at 3 = Band x=%.

For the linear model, the estimated ME of the jth regressor is Ej, so there 1s 1o need
to use mfx. But mfx can also be used to compute elasticities and semielasticities. For
example, the eyex option computes the elasticity dy/dz x (z/y), evaluated at sample
means, which equals E_T- x (Z;/7) for the linear model. We have



.ok Computé elasticity for a specified regressor

. quietly regress totexp suppims phyllm actlim totchr age female income,
> vce(robust)

. wfx, varlist(totchr) eyex

Elasticities after regress
y = Fitted values Cpredlct)

= 7290.2382
variable ey/ex Std. Err. z P>zl { 95% ¢.I. 1 X
totchr .457613 .04481 10.21  0.000  .369793 .545433 1.8088

A 1% increase in chronic problems is associated with a 0.46% increase in medical ex-
penditures. The varlist(totchr) option restricts results to just the regressor totchr.

The predict() option of nfx allows the computation of MEs for the other quantities
that can be produced using predict.

3.6.3 Prediction in logs: The retransformation problem

Transforming ‘the dependent variable by taking the natural logarithm complicates pre-
diction. It is easy to predict E(lny|x), but we are instead interested in F(y|x) because
we want to predict the level of medical expenditures rather than the natural logarithm.
The obvious procedure of predicting Iny and takmg the exponentlal is wrong because

exp{E(Iny)} # E(y), just as, for example, /E(y*) # E(y

The log-linear model Iny = x'B + u implies that y = exp(x’,ﬁ) exp(u). It follows
that
E(yilx;) = exp(x;8) E{exp(u)}

The simplest prediction is exp(x;,é), but this is wrong because it ignores the multiple
E{exp(u;)}. Ifit is assumed that u; ~ N(0, o?), then it can be shown that E{exp({u;)} =
exp(0.507), which can be estimated by exp(0.552), where 7~ is an unbiased estimator
of the log-linear regression model error. A weaker assumption is to assume that u;
is independent and identically distributed, in which case we can consistently estimate
E{exp(w;)} by the sample average N~* Z_{;’zl exp(;); see Duan (1983).

Applying these methods to the medical expenditure data yields

. * Prediction in levels from a logarithmic model

. quietly regress ltotexp suppins phylim actlim totchr age female income
. quietly predict 1§£at
. generate yhatwrong = exp(lyhat)
. generate yhatnormal = exp(lyhat)*«exp(0.5*xe(rmse)”2)
. quietly predict ubat, residual

. generate expuhat = expf(uhat)

. guietly summarize expuhat

. generate yhatduan = r{mean)*exp(lyhat)

. summarize totexp yhatwrong yhatnormal yhatduan yhatlevels

Variable i Obs Mean Std. Dev. Min Max
totexp i 2955 7290.235 11990.84 . 3 128810
yhatwrong i 2955 4004.453 2303.555 959.5991 37726.22
yhatoormal ] 2955 8249.927 £805.945 1976.955 TI723.13
yhatduan E 2955 8005.522 £604:318 1518.387 75420.57
vhatlevels é 2065 7290.235 4089.624 -236.3781 22559



Ignoring the retransformation bias leads to a very poor prediction, because yhatwrong
has a mean of $4,004 compared with the sample mean of $7,290. The two alterna-
tive methods yield much closer average values of $8,250 and $8,006. Furthermore, the
predictions from log regression, compared with those in levels, have the desirable fea-

ture of always being positive and have greater variability. The standard deviation of
yhatnormal, for example, is $6,3806 compared with $4,090 from the levels model.

3.6.4 Prediction exercise

There are several ways that predictions can be used to simulate the effects of a policy
experiment. We consider the effect of a binary treatment, whether & person has supple-
mentary insurance, on medical expenditure. Here we base our predictions on estimates
that assume supplementary insurance is exogenous. A more thorough analysis could
instead use methods that more realistically permit insurance to be endogenous. As we
discuss in section 6.2.1, a variable is endogenous if it is related to the error term. Owr
analysis here assumes that supplementary insurance is not related to the error term.

An obvious comparison is to compare the difference in sample means (7; — Tg),
where the subscript 1 denotes those with supplementary insurance and the subscript
0 denotes those without supplementary insurance. This measure does not control for
individual characteristics. A measure that does control for individual characteristics is
the difference in mean predictions (%, — ?0) , where, for example, 7, denotes the average
prediction for those with health insurance.

We implement the first two approaches for the complete sample based on OLS re-
gression in levels and in logs. We obtain

. * Predicted effect of supplementary insurance: methods 1 and 2
. bysort suppins: summarize totexp yhatlevels yhatduan

-> suppins = 0

Variable Obs Mean Std. Dev. Min Max
totexp 1207 6824.303 11425.94 9 104823
yhatlevels 1207 6824.303 4077.064 -236.3781 20131.43
vhatduan 1207 6745.959 5365.255 1918.387 54981.73

-> suppins = 1

Variable Obs Mean Std. Dev. Min Max
totexp 1748 7611.963 12358.83 3 125610
yhatlevels | 1748 7611.963 4068.397  502.9237 22559

yhatduan | 1748 8875.255 7212.983  2518.538  75420.57



The average difference is $788 (from 7612 — 6824) using either the difference in sample
means or the difference in fitted values from the linear model. Equality of the two
is a consequence of OLS regression and prediction using the estimation sample. The
log-linear model, using the prediction based on Duan’s method, gives a larger average
difference of $2,129 (from 8875 — 6746).

A third measure is the difference between the mean predictions, one with suppins
set to 1 for all observations and one with suppins == 0. For the linear model, this is
simply the estimated coefficient of suppins, which is $725.

For the log-linear model, we need to make separate predictions for each individual
with suppins set to 1 and with suppins set to 0. For simplicity, we make predictions
in levels from the log-linear model assuming normally distributed errors. To make these
changes and after the analysis have suppins returned to its original sample values, we
use preserve and restore (see section 2.5.2). We obtain’

. ¥ Predicted effect of supplementary insurance: method 3 for log-linear model
- quietly regress ltotexp suppins phylim actlim totchr age female income
preserve

.

quietly replace suppins = 1

. quietly predict Lyhatl

- gemerate yhatnormall = exp(lyhatl)*exp(0.S5«e(rmse)"2)
. quietly replace suppins = 0

. quietly predict lyhat0

- generate yhatnormalO = exp(lyhatO)#exp(0Q.5xe(rmse)~2)
.+ gonerate treateffect = yhatonormall - yhatnormal®d

. summarize yhatnormall yhatnormalQ treateffect

Variable Obs Mean Std. Dev, Min Max
yhatnormalil 2955 9077.072 7313.963  2552,825 77723.13
yhatnormal0 2955 7029.453 5664.069 1976.955 60190.23
treateffect 2955 2047.619 1649.894 575,8701 178532.91
. restore

While the average treatment effect of $2,048 is considerably larger than that obtained
by using the difference in sample means of the linear model, it is comparable to the
estimate produced by Duan’s method.

1
Note: If a random variable X~N(u, 6%), then Y = exp(X) ~ lognormal. E(Y) = exp (u +3 az).

Note: If you need to run a regression but do not need the output to be displayed, use:

quietly regressy x1 x2 .....



Linear Regression (Ch4in CT)

4.3. Example: Returns to Schooling

A leading linear regression application from labor economics concerns measuring the
impact of education on wages or earnings.
A typical returns to schooling model specifies

Inw; =as; +x5,8+u;, i=1,.,N, 45)

where w denotes hourly wage or annual earnings, s denotes years of completed school-
ing, and x; denotes control variables such as work experience. gender, and family
background. The subscript i denotes the ith person in the sample. Since the dependent
variable is log wage. the model is a log-linear model and the coefficient @ measures
the proportionate change in eamings associated with a one-year increase in education.

Estimation of this model is most often by ordinary least squares. The transforma-
tion to Inw in practice ensures that errors are approximately homoskedastic. but it
is still best to obtain heteroskedastic consistent standard errors as detailed in Sec-
tion 4.4. Estimation can also be by quantile regression (see Section 4.6), if interest
lies in distributional issues such as behavior in the lower quartile.

The regression (4.5) can be used immediately in a descriptive manner. For exam-
ple, if @ = 0.10 then a one-year increase in schooling is associated with 10% higher
earnings, controlling for all the factors included in x2. It is important to add the last
qualifier as in this example the estimate & usually becomes smaller as X; is expanded
to include additional controls likely to influence earnings.

Policy interest lies in determining the impact of an exogenous change in schooling
on earnings. However, schooling is not randomly assigned: rather, it is an outcome that
depends on choices made by the individual. Human capital theory treats schooling as
investment by individuals in themselves, and « is interpreted as a measure of return to
human capital. The regression (4.5) is then a regression of one endogenous variable,
y. on another, s, and so does not measure the causal impact of an exogenous change

in 5. The conditional mean function here is not causally meaningful because one is
conditioning on a factor, schooling. that is endogenous. Indeed, unless we can argue
that s is itself a function of variables at least one of which can vary independently of
u, it is unclear just what it means to regard « as a causal parameter.

Such concern about endogenous regressors with observational data on individuals
pervades microeconometric analysis. The standard assumptions of the linear regres-
sion model given in Section 4.4 are that regressors are exogenous. The consequences
of endogenous regressors are considered in Section 4.7. One method to control for
endogenous regressors, instrumental variables, is detailed in Section 4.8. A recent ex-
tensive review of ways to control for endogeneity in this wage-schooling example is
given in Angrist and Krueger (1999). These methods are summarized in Section 2.8
and presented throughout this book.



4.4.1. Linear Regression Model

In a standard cross-section regression model with N observations on a scalar
dependent variable and several regressors, the data are specified as (y, X), where y
denotes observations on the dependent variable and X denotes a matrix of explanatory
variables.

The general regression model with additive errors is written in vector notation as

y = E[yIX] + u, (4.6)

where E[y|X] denotes the conditional expectation of the random variable y given X,
and u denotes a vector of unobserved random errors or disturbances. The right-hand
side of this equation decomposes y into two components, one that is deterministic
given the regressors and one that is attributed to random variation or noise. We think
of E[y|X] as a conditional prediction function that yields the average value, or more
formally the expected value, of y given X.

A linear regression model is obtained when E[y|X] is specified to be a linear func-
tion of X. Notation for this model has been presented in detail in Section 1.6. In vector
notation the ith observation is

¥i = X;B+4u;, 4.7

where x; is a K x | regressor vector and 3 is a K x | parameter vector. At times
it is simpler to drop the subscript i and write the model for typical observation as
¥ = X’ + u. In matrix notation the N observations are stacked by row to yield

y=XB+u, 438)

where y is an N x | vector of dependent variables, X is an N x K regression ma-
trix, and uis an N x | error vector.

Equations (4.7) and (4.8) are equivalent expressions for the linear regression model
and will be used interchangeably. The latter is more concise and is usually the most
convenient representation.

In this setting y is referred to as the dependent variable or endogenous variable
whose variation we wish to study in terms of variation in x and u: u is referred to as
the error term or disturbance term: and x is referred to as regressors or predictors
or couariates. If Assumption 4 in Section 4.4.6 holds, then all components of x are

exogenous variables or independent variables.

4.4.2. OLS Estimator

The OLS estimator is defined to be the estimator that minimizes the sum of squared
efrors
N
Zuf =u'u=(y - X3y - X3). (4.9)
i=l
Setting the derivative with respect to /3 equal to 0 and solving for 3 yields the OLS
estimator,

Bos = (X'X)'X'y, (4.10)

see Exercise 4.5 for a more general result, where it is assumed that the matrix inverse of
X'X exists. If X'X is of less than full rank, the inverse can be replaced by a generalized
inverse. Then OLS estimation still yields the optimal linear predictor of y given x if
squared error loss is used, but many different linear combinations of x will yield this
optimal predictor.



4.4.4. Distribution of the OLS Estimator

We focus on the asymptotic properties of the OLS estimator. Consistency is estab-
lished and then the limit distribution is obtained by rescaling the OLS estimator.
Statistical inference then requires consistent estimation of the variance matrix of the
estimator. The analysis makes extensive use of asymptotic theory, which is summa-
rized in Appendix A.

Consistency

The properties of an estimator depend on the process that actually generated the data,
the data generating process (dgp). We assume the dgp is y = X3 + u, so that the
model (4.8) is correctly specified. In some places, notably Chapters 5 and 6 and Ap-
pendix A the subscript 0 is added to /3, so the dgp is y = X/30 + u. See Section 5.2.3
for discussion.

Then

Bos = (X'X)"'X'y
= (X'X)"'X'(X8 + u)
= (X'X)"'X'X8 + (X'X) 'Xu,

and the OLS estimator can be expressed as
Bois = B + (X'X)'X'u. .11
To prove consistency we rewrite (4.11) as
Bois =B+ (N'X'X) ' N 'X"u. 4.12)

The reason for renormalization in the right-hand side is that N 'X'X = N ' ¥, x;x!
is an average that converges in probability to a finite nonzero matrix if x; satisfies
assumptions that permit a law of large numbers to be applied to x;X; (see Section 4.4.8
for detail). Then
plim Bors = B + (plim N'X'X) ' (plim N~'X'u),
using“Slutsky’s Theorem (Theorem A.3). The OLS estimator is consistent for 3 (i.e..
plim N "'X'u = 0. (4.13)

If a law of large numbers can be applied to the average N 'X'u = N 'Y, x;u; then
a necessary condition for (4.13) to hold is that E[x;u;] = 0.



APPENDIX A

Asymptotic Theory
A.2. Convergence in Probability

Because of the intrinsic randomness of a sample we can never be certain that a se-
quence by, such as an estimator ¢ (often denoted &y to make clear that it is a se-
quence), will be within a given small distance of its limit, even if the sample is in-
finitely large. However, we can be almost certain. Different ways of expressing this
near certainty correspond to different types of convergence of a sequence of random
variables to a limit. The one most used in econometrics is convergence in probability.

A.2.1. Convergence in Probability

Recall that a sequence of nonstochastic real numbers [ay ) converges to a if, for any
£ > 0, there exists N* = N*(¢) such that, forall N > N*,

lay —a| <e.

For example, if ay = 2+ 3/N, then the limit is @ = 2 since |ay —a| = |2+ 3/N —
2|=|3/N| <eforall N > N* =3/e.

When more generally we have a sequence of random variables we cannot be certain
of being within £ of the limit. even for large N, because of intrinsic randomness.
Instead. we require that the probability of being within « is arbitrarily close to one.
Thus we require

lim Pr{|by — b <&] =1,
N0
for any £ > 0. A formal definition is the following:

Definition A.1 (Convergence in Probability): A sequence of random variables
[by) converges in probability to b if, for any £ > 0 and § > 0, there exists
N* = N*(¢,8) such that, for all N > N*,

Prllby — bl < €] > 1 — &. (A1)

We write plim by = b, where plim is shorthand for probability Hmit, or by Lb.

Note that » may be a constant or a random variable. Convergence in probability
includes as a special case the usual definition of convergence for a sequence of real
variables.

Definition A.1 is for a sequence of scalar random variables. The extension to vector
random variables. such as a parameter vector estimator, is straightforward. We can
either apply the theory for each element of by, or replace |by — b| by the scalar (by —
bY(by —b) = (biy — b1)* +--- + (bgy — bg)* or its square root ||by — b]|.

When the sequence |by ) is a sequence of parameter estimates 8, we have the fol-
lowing large sample analogue of unbiasedness.

Definition A.2 (Consistency): An estimator 8 is consistent for 8o if

plim @ = 6y. (A.2)



The subscript 0 on @ is explained in Section 5.2.3. Note that unbiasedness need
not imply consistency. Unbiasedness states only that the expected value of @ is 8,
and it permits variability around 6y that need not disappear as the sample size goes to
infinity. Also, a consistent estimator need not be unbiased. For example, adding | /N
to an unbiased and consistent estimator produces a new estimator that is biased but
still consistent.

Although the sequence of vector random variables [by} may converge to a random
variable b, in many econometric applications by} converges to a constant. For ex-
ample, we hope that an estimator of a parameter will converge in probability to the
parameter itself. One should be aware that some of the results that follow apply only
if the limit value b is a constant.

Theorem A3 (Slutsky’s Theorem): Let by be a finite-dimensional vector of
random variables, and g(-) be a real-valued function continuous at a constant
vector point b. Then

by 5 b= g(by) > g(b). (A3)

Proof is given in Amemiya (1985, p. 79). Ruud (2000) presents a related result (see
also Rao, 1973, p. 124) that lets the limit b be a random variable, at the expense of
restricting g(-) to be continuous everywhere. Note that some authors instead refer to
Theorem A.12 below as Slutsky’s Theorem.

Theorem A.3 is one of the major reasons for the prevalence of asymptotic re-
sults versus finite-sample results in econometrics. It states a very convenient property
that does not hold for expectations. For example, plim(b,y, baxy) = (b, b;) implies
pliim(byybax) = by by, whereas E[b)ybyy ] generally differs from E[b, JE[,].



