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The most difficult issue to address is whether model (2.1) really allows us to draw
cetenis paribus conclusions about how x affects y. We just saw in equation (2.2) that 8,
does measure the effect of x on y, holding all other factors (in &) fixed. Is this the end
of the causality issue? Unfortunately, no. How can we hope to learn in general about
the ceteris paribus effect of x on y, holding other factors fixed, when we are ignoring all
those other factors?

As we will see in Section 2.5, we are only able to get reliable estimators of 8, and
B, from a random sample of data when we make an assumption restricting how the
unobservable u is related to the explanatory vanable x. Without such a restriction, we
will not be able to estimate the ceteris paribus effect, 8,. Because u and x are random
vanables, we need a concept grounded in probability.

Before we state the key assumption about how x and u are related, there is one assump-
tion about u that we can always make. As long as the intercept £ 1s included in the equa-
tion, nothing is lost by assuming that the average value of « in the population is zero.

Mathematically,

E() = 0. -

Importantly, assume (2.5) says nothing about the relationship between u and x but sim-
ply makes a statement about the distribution of the unobservables in the population.

We now tum to the crucial assumption regarding how & and x are related. A natural
measure of the association between two random variables is the correlation coefficient.
(See Appendix B for definition and properties.) If u and x are uncorrelated, then, as ran-
dom variables, they are not linearly related. Assuming that & and x are uncorrelated goes
a long way toward defining the sense in which u and x should be unrelated in equation
(2.1). But it does not go far enough, because correlation measures only lincar depen-
dence between u and x. Correlation has a somewhat countenintuitive feature: it is possi-
ble for u to be uncorrelated with x while being correlated with functions of x, such as
x°. (See Section B 4 for further discussion.) This possibility is not acceptable for most
regression purposes, as it causes problems for interpretating the model and for denving
statistical properties. A better assumption involves the expected value of u given x.

Because w and x are random vanables, we can define the conditional distribution of
u given any value of x. In particular, for any x, we can obtain the expected (or average)
value of u for that slice of the population described by the value of x. The crucial
assumption is that the average value of u does not depend on the value of x. We can

write this as
Edulr) = E(w) = 0, e

where the second equality follows from (2.5). The first equality in equation (2.6) is the
new assumption, called the zero conditional mean assumption. It says that, for any
given value of x, the average of the unobservables is the same and therefore must equal
the average value of u in the entire population.



EQ) = By + Bix (2.8)

Equation (2.8) shows that the population regression function (PRF), E(y[x), is a lin-
ear function of x. The linearity means that a one-unit increase in x changes the expect-

ed value of y by the amount B8,. For any given value of x, the distribution of y is cen-
tered about E(y|x), as illustrated in Figure 2.1.

Figure 2.1
E(y|x) as a linear function of x.
y
E(vix) = B, + Bx
| | |
X X X3

There are several ways to motivate the following estimation procedure. We will use
(2.5) and an important implication of assumption (2.6): in the population, « has a zero
mean and is uncorrelated with x. Therefore, we see that u has zero expected value and
that the covariance between x and u is zero:

E(u) =0 (2.10)
Covix,u) = E(xu) = 0, 2.11)

where the first equality in (2.11) follows from (2.10). (See Section B.4 for the defini-
tion and properties of covariance.) In terms of the observable variables x and y and the
unknown parameters B, and 3,, equations (2.10) and (2.11) can be written as

E(Y — Bo— B®) = 0 2.12)
and
EIX(Y — By — BiX)] = 0, 2mn)

respectively. Equations (2.12) and (2.13) imply two restrictions on the joint probability
distribution of (x.y) in the population. Since there are two unknown parameters to esti-
mate, we might hope that equations (2.12) and (2.13) can be used to obtain good esti-



mators of B,and B,. In fact, they can be. Given a sample of data, we choose estimates
ﬂuand B. to solve the sample counterparts of (2.12) and (2.13):

n"§(»-&-ﬁ.x.-)=o. .

n! 21 x0:— Bo— Bix) = 0. (2.15)

This is an example of the method of moments approach to estimation. (See Section C.4
for a discussion of different estimation approaches.) These equations can be solved for

By and B,.
Using the basic properties of the summation operator from Appendix A, equation

(2.14) can be rewritten as
3= At Bt @16

where ¥ =n" 'Ev,ismesmnpleavmgeofmev,andlikewiseforx This equation allows
ustowﬂteﬁointetmsofﬁ,,v and x:

A=y - am
Therefore, once we have the slope estimate 3,. it is straightforward to obtain the inter--
cept estimate f3,, given ¥ and X.
Dropping the 2" in (2.15) (since it does not affect the solution) and plugging (2.17)
into (2.15) yields

2 - - BD - Bx) =0

which, upon rearrangement, gives

‘2 -9 =5 ‘=2| X(x;— X)

From basic properties of the summation operator [see (A.7) and (A.8)],

zl X(x;—x) = 21 (x; — 1)* and gl xyi—mn-= 21 x; = ;. — 9.

Therefore, provided that

2 m—17>0,

i=1

the estimated slope is

Sa-noi-»
Sa-r

.




Equation (2.19) is simply the sample covariance between x and y divided by the sam-
ple variance of x. (See Appendix C. Dividing both the numerator and the denominator
by n — 1 changes nothing.) This makes sense because 3, equals the population covari-
ance divided by the variance of x when E(«) = 0 and Cov(x,u) = 0. Ap immediate
implication is that if x and y are positively correlated in the sample, then 3, is positive;
if x and y are negatively correlated, then 3, is negative.

Although the method for obtaining (2.17) and (2.19) is motivated by (2.6), the only
assumption needed to compute the estimates for a particular sample is (2.18). This is
hardly an assumption at all: (2.18) is true provided the x;in the sample are not all equal
to the same value. If (2.18) fails, then we have either been unlucky in obtaining our
sample from the population or we have not specified an interesting problem (x does not
vary in the population.). For example, if y = wage and x = educ, then (2.18) fails only
if everyone in the sample has the same amount of education. (For example, if everyone
is a high school graduate. See Figure 2.3.) If just one person has a different amount of
education, then (2.18) holds, and the OLS estimates can be computed.

. bcuse ceosall

Contains data from http://ffmwww.bc.edu/ec-p/data/wooldridge/ceosall.dta
obs: 209

vars: 12 25 Sep 2012 14:44

size: 6,270

storage display value
variable name type format label variable label

salary int  %9.0g 1990 salary, thousands $
pcsalary int  %9.0g % change salary, 89-90
sales float %9.0g 1990 firm sales, millions $
roe float %9.0g return on equity, 88-90 avg
pcroe float %9.0g % change roe, 88-90

ros int  %9.0g return on firm's stock, 88-90
indus byte %9.0g =1 if industrial firm

finance byte %9.0g =1 if financial firm

consprod byte %9.0g =1 if consumer product firm
utility byte %9.0g =1 if transport. or utilties
Isalary float %9.0g natural log of salary

Isales float %9.0g natural log of sales

. reg salary roe

Source | SS df MS Number of obs = 209
+ F( 1, 207)= 277
Model | 5166419.04 1 5166419.04 Prob>F = 0.0978

Residual | 386566563 207 1867471.32 R-squared = 0.0132

+ Adj R-squared = 0.0084

Total | 391732982 208 1883331.64 Root MSE = 1366.6

salary| Coef. Std. Err. t P>|t| [95% Conf. Interval]
+ -

roe| 1850119 11.12325 1.66 0.098 -3.428196 40.43057

_cons| 963.1913 213.2403 4.52 0.000 542.7902 1383.592
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Homework:

Show that the following three statements are true. Make sure that you clearly state all
assumptions that you make and that you show all steps.

E(F) = 1
E(Bo) = Bo.
_ o2
Var(By) = S
= z (I.'—f).,' a
ﬁ:=ﬂn+"'T=ﬂn+(Ur.’)i_2ld.-.-. (2.52)

THEOREM 2.1 (UNBIASEDNESS OF OLS)
Using Assumptions SLR.1 through SLR.4,

E(B,) = By, and E(B)) = B, |
for any values of By and B,. In other words, Bo is unbiased for By, and B, is unbiased for B;.

PR O OF: Inthisproof, the expected values are conditional on the sample values of
the independent variable. Since s? and d, are functions only of the x;, they are nonrandom
in the conditioning. Therefore, from (2.53),

E(B,) = B, + El(1/s?) 2‘1 du;] = B, + (1/s3) 5_‘; E(d.u;)

=B, + (1/s)) § dEW) = B+ (1/s) 2. 40 = By,

where we have used the fact that the expected value of each u; (conditional on {x, x5,...,.x,})
is zero under Assumptions SLR.2 and SLR.3.
The proof for By is now straightforward. Average (2.48) across i to get § = By + BiX +
0, and plug this into the formula for By
B=y-Bx=B+Bx+a—Bx=pB+ (B - B)x+a

Then, conditional on the values of the x;,

E(B,) = B, + EI(B, — B)x] + E®@) = B, + EI(B, — B)Ix.

since E(@) = 0 by Assumptions SLR.2 and SLR.3. But, we showed that E(8,) = B,, which
implies that E[(8, — B,)] = 0. Thus, E(&) = B,. Both of these arguments are valid for any
values of By and B4, and so we have established unbiasedness.




THEOREM 2.2 (SAMPLING VARIANCES OF THE
OLS ESTIMATORS)
Under Assumptions SLR.1 through SLR 5,

vary) = —Z— = ois? 257
E (x;— x)*
o’n! i x?
Var(B,) = ———, (2.58)

; (X; — 1’

where these are conditional on the sample values {x,,... x.}.

PROOF: We derive the formula for Var(8,), leaving the other derivation as an
exercise. The starting point is equation (2.52): By = By + (1/sD) 2 d.u;. Since B, is just a
=1

constant, and we are conditioning on the x, s? and d. = x, — % are also nonrandom.
Furthermore, because the u; are independent random variables across /i (by random
sampling), the variance of the sum is the sum of the variances. Using these facts, we have

Var(B,) = (1/s2)*Var (E d,.u,.) = (/52 (2 d%\farm,.))
i=1 i=1
= w22 D d;?or’-) [since Var(u,) = o7 for all ]
i=1
= oz(usfyz(z d,?) = o (Us2Ps? = oY,
i=1

which is what we wanted to show.

Estimating the Error Variance:

We will use the following unbiased estimator of the error variance:
l n
> a2 = SSR/(n — 2). .61

¢ e I e
& (n—2)5

The standard error of the estimate of the slope coefficient is:

< 12
se(Bl) — 6'st= a’/(z (x‘__ x)Z)
i=1



