Question 1: (2.5+ $2.5=5$ points)
The time between customers at an ATM machine follows an exponential probability distribution with a mean time of 5 minutes between arrivals.
a) What is the probability that the time between two successive customers will be 3 minutes or less?
b) What is the probability that no customer arrives in a 4-minute time interval?

Solution:
a) Given that the time interval between customers is 5 minutes, customers per minute is $\lambda=1 / 5$. $P(t<3)=1-e^{-(1 / 5) * 3}$
b) Poisson dist. with $\lambda=4 / 5$ per 4 minutes. Then, $P(X=0)=e^{-4 / 5} \cdot\left(\frac{4}{5}\right)^{0} / 0!=e^{-4 / 5}$. Or, exponential: $P(t>4)=1-\left[1-e^{-(1 / 5) * 4}\right]$.

Question 2: (5 points)
A delivery company divides their packages into weight classes. Suppose packages are uniformly distributed between 5 and 15 kilograms. What is the probability that a package will be between 8 and 10 kilograms?

Solution:

Uniform distribution. $f(X)=\frac{1}{15-5}=\frac{1}{10}$. Then, $P(8<X<10)=(10-8) \cdot \frac{1}{10}=\frac{2}{10}$.
Question 3: (6+6 = 12 points)
Suppose the heights of male university students are normally distributed. Suppose that a sample of 25 students has an average height of 170 centimeters. Build a 99% confidence interval around the population mean in the following two cases:
a) By assuming that the population variance is 25 .
b) By assuming that the population variance is unknown and the sample variance is 25.

Solution:

a) Based on this sample, the 99% confidence interval for the population mean will be $\left(\bar{X}-Z_{a / 2} \frac{\sigma}{\sqrt{n}}\right.$, $\left.\bar{X}+Z_{a / 2} \frac{\sigma}{\sqrt{n}}\right)=\left(170-2.57\left(\frac{5}{5}\right), 170-2.57\left(\frac{5}{5}\right)\right)=(167.43,172.57)$
b) $t_{n-1, a / 2}=t_{24,0.005}=2.797$.

Based on this sample, the 99% confidence interval for the population mean will be ($\bar{X}-t_{n-1, a / 2} \frac{\sigma}{\sqrt{n}}$, $\left.\bar{X}+t_{n-1, a / 2} \frac{\sigma}{\sqrt{n}}\right)=\left(170-2.797\left(\frac{5}{5}\right), 170-2.797\left(\frac{5}{5}\right)\right)=(167.203,172.797)$

Question 4: (6 points)
A random sample of 400 homes was taken from a large population of homes to estimate the proportion of homes with lead based paint. Out of 400 homes, 80 of them had lead based paint. Based on this information, build a 95% confidence interval for the true proportion of homes with lead based paint.

Solution:

We will assume that $\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0,1)$.
Therefore, the $95 \% \mathrm{Cl}$ will be $\left(\hat{p}-Z_{a / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+Z_{a / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$.
$\left(0.20-1.96 \sqrt{\frac{0.20(1-0.20)}{400}}, 0.20+1.96 \sqrt{\frac{0.20(1-0.20)}{400}}\right)$
$=\left(0.20-1.96 * \frac{0.4}{20}, \quad 0.20+1.96 * \frac{0.4}{20}\right)=(0.20-0.0392,0.20+0.0392)=(0.1608,0.2392)$

Question 5: (6 points)
A random sample of size $n=25$ is obtained from a normally distributed population with a population mean of 198 and a variance of 100 . What is the probability that the sample mean is greater than 200 ?

$$
P(\bar{X}>200)=P\left(Z>\frac{200-198}{10 / 5}\right)=P(Z>1)=1-P(Z<1)=1-0.8413=0.1587
$$

Question 6: (6 points)
In a large city it was found that summer electricity bills for single-family homes followed a normal distribution with a standard deviation of $\$ 100$. A random sample of 25 bills was taken. Find the probability that the sample standard deviation is less than $\$ 75$.
$P(S<75)=P\left(\frac{(n-1) s^{2}}{\sigma^{2}}<\frac{24 * 75^{2}}{100^{2}}\right)=P\left(X_{24}<13.5\right)$
$0.95<P\left(X_{24}>13.5\right)<0.975$
Then, $0.025<P\left(X_{24}<13.5\right)<0.05$.

Question 1: (5 points)

A delivery company divides their packages into weight classes. Suppose packages are uniformly distributed between 5 and 20 kilograms. What is the probability that a package will be between 10 and 15 kilograms?

Solution:

Uniform distribution. $f(X)=\frac{1}{20-5}=\frac{1}{15}$. Then, $P(10<X<15)=(15-10) \cdot \frac{1}{15}=\frac{5}{15}$.

Question 2: ($6+6=12$ points $)$
Suppose the heights of male university students are normally distributed. Suppose that a sample of 25 students has an average height of 170 centimeters. Build a 99% confidence interval around the population mean in the following two cases:
a) By assuming that the population variance is 36 .
b) By assuming that the population variance is unknown and the sample variance is 36.

Solution:

a) Based on this sample, the 99% confidence interval for the population mean will be $\left(\bar{X}-Z_{a / 2} \frac{\sigma}{\sqrt{n}}\right.$, $\left.\bar{X}+Z_{a / 2} \frac{\sigma}{\sqrt{n}}\right)=\left(170-2.57\left(\frac{6}{5}\right), 170-2.57\left(\frac{6}{5}\right)\right)=(166.916,173.084)$
b) $t_{n-1, a / 2}=t_{24,0.005}=2.797$.

Based on this sample, the 99% confidence interval for the population mean will be ($\bar{X}-t_{n-1, a / 2} \frac{\sigma}{\sqrt{n}}$,
$\left.\bar{X}+t_{n-1, a / 2} \frac{\sigma}{\sqrt{n}}\right)=\left(170-2.797\left(\frac{6}{5}\right), 170-2.797\left(\frac{6}{5}\right)\right)=(166.6436,173.3564)$

Question 3: (6 points)
A random sample of size $\mathrm{n}=36$ is obtained from a normally distributed population with a population mean of 198 and a variance of 100 . What is the probability that the sample mean is greater than 200 ?

Solution:

$$
\begin{aligned}
P(\bar{X}>200)= & P\left(Z>\frac{200-198}{10 / 6}\right)=P(Z>1.2)=1-P(Z<1.2)=1-0.8849 \\
& =0.1151
\end{aligned}
$$

Question 4: (6 points)
A random sample of 400 homes was taken from a large population of homes to estimate the proportion of homes with lead based paint. Out of 400 homes, 40 of them had lead based paint. Based on this information, build a 95% confidence interval for the true proportion of homes with lead based paint.

Solution:

We will assume that $\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0,1)$.
Therefore, the $95 \% \mathrm{Cl}$ will be $\left(\hat{p}-Z_{a / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+Z_{a / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$.
$\left(0.10-1.96 \sqrt{\frac{0.10(1-0.10)}{400}}, \quad 0.10+1.96 \sqrt{\frac{0.10(1-0.10)}{400}}\right)$
$=\left(0.10-1.96 * \frac{0.3}{20}, \quad 0.10+1.96 * \frac{0.3}{20}\right)=(0.10-0.0294,0.10+0.0294)=(0.0706,0.1294)$

Question 5: (6 points)
In a large city it was found that summer electricity bills for single-family homes followed a normal distribution with a standard deviation of $\$ 100$. A random sample of 23 bills was taken. Find the probability that the sample standard deviation is less than $\$ 75$.

Solution:

$P(S<75)=P\left(\frac{(n-1) s^{2}}{\sigma^{2}}<\frac{22.75^{2}}{100^{2}}\right)=P\left(X_{22}<12.375\right)$.
$0.90<P\left(X_{22}>12.375\right)<0.95$
Then, $0.05<P\left(X_{22}<12.375\right)<0.10$.
Question 6: $(2.5+2.5=5$ points $)$
The time between customers at an ATM machine follows an exponential probability distribution with a mean time of 6 minutes between arrivals.
a) What is the probability that the time between two successive customers will be 4 minutes or less?
b) What is the probability that no customer arrives in a 5-minute time interval?

Solution:

a) Given that the time interval between customers is 5 minutes, customers per minute is $\lambda=1 / 6$. $P(t<4)=1-e^{-(1 / 6) * 4}$
b) Poisson dist. with $\lambda=5 / 6$ per 5 minutes. Then, $P(X=0)=e^{-5 / 6} \cdot\left(\frac{5}{6}\right)^{0} / 0!=e^{-5 / 6}$. Or, exponential: $P(t>5)=1-\left[1-e^{-(1 / 6) * 5}\right]$.

