Statistics for Business and Economics 6th Edition

Chapter 10

Hypothesis Testing

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving
 - a single population mean from a normal distribution
 - a single population proportion (large samples)
- Formulate a decision rule for testing a hypothesis
- Know how to use the critical value and p-value approaches to test the null hypothesis (for both mean and proportion problems)
- Know what Type I and Type II errors are
- Assess the power of a test

What is a Hypothesis?

 A hypothesis is a claim (assumption) about a population parameter:

population mean

Example: The mean monthly cell phone bill of this city is $\mu = 42

population proportion

Example: The proportion of adults in this city with cell phones is p = .68

States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. Homes is equal to three $(H_0 : \mu = 3)$

 Is always about a population parameter, not about a sample statistic

 H_0 : $\mu = 3$

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H₁

Is the opposite of the null hypothesis

- e.g., The average number of TV sets in U.S. homes is not equal to 3 (H₁: µ ≠ 3)
- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Errors in Making Decisions

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is $\boldsymbol{\alpha}$

- Called level of significance of the test
- Set by researcher in advance

- Type II Error
 - Fail to reject a false null hypothesis

The probability of Type II Error is β

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (
$$\alpha$$
) 1, then
Type II error probability (β) 1

- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., Power = P(Reject $H_0 | H_1$ is true)
 - Power of the test increases as the sample size increases

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - Smallest value of α for which H₀ can be rejected

p-Value Approach to Testing

(continued)

- Convert sample result (e.g., x̄) to test statistic (e.g., z statistic)
- Obtain the p-value • For an upper tail test: $P - value = P(Z > \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}, \text{ given that } H_0 \text{ is true})$ $= P(Z > \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \mid \mu = \mu_0)$
- Decision rule: compare the p-value to α

Form hypothesis test:

H ₀ : µ ≤ 52	the average is not over \$52 per month
H ₁ : μ > 52	the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Sample Results

(continued)

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\overline{x} = 53.1$ (σ =10 was assumed known)

Using the sample results,

In many cases, the alternative hypothesis focuses on one particular direction

This is an upper-tail test since the
alternative hypothesis is focused on the upper tail above the mean of 3

This is a lower-tail test since the
alternative hypothesis is focused on the lower tail below the mean of 3

 $H_0: \mu \leq 3$ There is only one $H_1: \mu > 3$ critical value, since the rejection area is in only one tail α Do not reject H₀ Reject H₀ Zα Ζ $\mathbf{0}$ $\overline{\mathbf{X}}$ μ **Critical value**

Two-Tail Tests

In some settings, the $H_0: \mu = 3$ alternative hypothesis does **H**₁: μ ≠ 3 not specify a unique direction $\alpha/2$ $\alpha/2$ There are two critical values, X 3 defining the two Reject H_o Reject H₀ Do not reject H₀ regions of Ζ 0 $+Z_{\alpha/2}$ -Ζ_{α/2} rejection Upper Lower critical value critical value

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 10-30

- State the appropriate null and alternative hypotheses
 - $H_0: \mu = 3$, $H_1: \mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that α = .05 is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

Hypothesis Testing Example

(continued)

- Determine the appropriate technique
 - σ is known so this is a z test
- Set up the critical values
 - For α = .05 the critical z values are ±1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are
 - n = 100, \overline{x} = 2.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

Since z = -2.0 < -1.96, we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

t Test of Hypothesis for the Mean (σ Unknown)

(continued)

For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

(Assume the population is normal, and the population variance is unknown)

The decision rule is:

Reject H₀ if
$$t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} < -t_{n-1, \alpha/2}$$
 or if $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1, \alpha/2}$

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in $\overline{x} = 172.50 and s = \$15.40. Test at the $\alpha = 0.05$ level. (Assume the population distribution is normal)

true mean cost is different than \$168

Tests of the Population Proportion

- Involves categorical variables
- Two possible outcomes
 - "Success" (a certain characteristic is present)
 - "Failure" (the characteristic is not present)
- Fraction or proportion of the population in the "success" category is denoted by P
- Assume sample size is large

When nP(1 – P) > 5, p̂ can be approximated by a normal distribution with mean and standard deviation

$$\blacksquare \mu_{\hat{p}} = \mathsf{P}$$

$$\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}}$$

Hypothesis Tests for Proportions

Example: Z Test for Proportion

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha = .05$ significance level.

Critical Values: ± 1.96

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

Using PHStat

3	PHS	itat <u>W</u> indow <u>H</u> elp Acro <u>b</u> at							
×-,		Data Preparation	×		📣 100%	- 🛛 🚧	₩ Ψ 3•	- 과 📾	
hh.		Descriptive Statistics			- 🕭	A • @ @	Q 49 70 '	1 1 2	
		Decision-Making	F	-				Ť	
		Probability & Prob. Distributions	ъĮ		I	J	K	L	
_		Sampling	٠ł						
_		Confidence Intervals	•						
		Sample Size	×						
		One-Sample Tests	•		Z Test for the Mean, sigma known 🗲				
		Two-Sample Tests	•		t Test for the Mean, sigma unknown				
_		Multiple-Sample Tests	•		Chi-Square T	est for the Va	ariance	\longrightarrow > Options	
		Control Charts	×		Z Test for the Proportion				<u> </u>
_		Regression	٠f						
_		Utilities	۰						
		About PHStat							
_		Help for PHStat							
	_								

Sample PHStat Output

- β denotes the probability of Type II Error
- 1β is defined as the power of the test

Power = $1 - \beta$ = the probability that a false null hypothesis is rejected

Assume the population is normal and the population variance is known. Consider the test

$$H_{0}: \mu = \mu_{0}$$

 $H_{1}: \mu > \mu_{0}$

Type II Error (Case 1)

The decision rule is:

Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha}$$
 Reject H₀ if $\overline{x} > \overline{x}_c = \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$

If the null hypothesis is false and the true mean is $\mu^* > \mu_0$, then the probability of type II error is

$$\beta = P(\overline{x} < \overline{x}_{c} \mid \mu = \mu^{*}) = P\left(z < \frac{\overline{x}_{c} - \mu^{*}}{\sigma / \sqrt{n}}\right)$$

Assume the population is normal and the population variance is known. Consider the test

$$H_{0}: \mu = \mu_{0}$$

 $H_{1}: \mu < \mu_{0}$

Type II Error (Case 2)

The decision rule is:

Reject H₀ if
$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}$$
 Reject H₀ if $\bar{x} < \bar{x}_c = \mu_0 - z_{\alpha} \frac{\sigma}{\sqrt{n}}$

If the null hypothesis is false and the true mean is $\mu^* < \mu_0$, then the probability of type II error is

$$\beta = \mathsf{P}(\overline{x} > \overline{x}_{c} | \mu = \mu^{*}) = \mathsf{P}\left(z > \frac{\overline{x}_{c} - \mu^{*}}{\sigma/\sqrt{n}}\right)$$

Power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error = β = 0.1539
- The power of the test = $1 \beta = 1 0.1539 = 0.8461$

	Actual Si	uation		
Decision	H ₀ True	H_0 False		
Do Not Reject H ₀	<mark>No error</mark> 1 - α = 0.95	Type II Error β = 0.1539		
Reject H ₀	Type I Error α = 0.05	<mark>No Error</mark> 1 - β = 0.8461		

(The value of β and the power will be different for each μ^*)

Key:

Outcome

(Probability)

- Addressed hypothesis testing methodology
- Performed Z Test for the mean (σ known)
- Discussed critical value and p-value approaches to hypothesis testing
- Performed one-tail and two-tail tests
- Performed t test for the mean (σ unknown)
- Performed Z test for the proportion
- Discussed type II error and power of the test