Statistics for Business and Economics $6{ }^{\text {th }}$ Edition

Chapter 10

Hypothesis Testing

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving
- a single population mean from a normal distribution
- a single population proportion (large samples)
- Formulate a decision rule for testing a hypothesis
- Know how to use the critical value and p-value approaches to test the null hypothesis (for both mean and proportion problems)
- Know what Type I and Type II errors are
- Assess the power of a test

What is a Hypothesis?

- A hypothesis is a claim (assumption) about a population parameter:
- population mean

Example: The mean monthly cell phone bill of this city is $\mu=\$ 42$

- population proportion

Example: The proportion of adults in this city with cell phones is $p=.68$

The Null Hypothesis, H_{0}

- States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. Homes is equal to three $\left(\mathrm{H}_{0}: \mu=3\right)$

- Is always about a population parameter, not about a sample statistic

The Null Hypothesis, H_{0}

- Begin with the assumption that the null hypothesis is true
- Similar to the notion of innocent until proven guilty
- Refers to the status quo

- Always contains "=" , " \leq " or " \geq " sign
- May or may not be rejected

The Alternative Hypothesis, H_{1}

- Is the opposite of the null hypothesis
- e.g., The average number of TV sets in U.S. homes is not equal to $3\left(H_{1}: \mu \neq 3\right)$
- Challenges the status quo
- Never contains the "=" , " \leq " or " \geq " sign
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Hypothesis Testing Process

Claim: the
population mean age is 50 . (Null Hypothesis:

$$
\left.H_{0}: \mu=50\right)
$$

Population

Is $\bar{X}=20$ likely if $\mu=50$?

If not likely,
REJECT
Null Hypothesis

Suppose the sample mean age
 is 20: $\overline{\mathrm{X}}=20$

Reason for Rejecting H_{0}

Sampling Distribution of \bar{X}

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
- Defines rejection region of the sampling distribution
- Is designated by α, (level of significance)
- Typical values are .01, .05, or . 10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Level of significance $=\boldsymbol{\alpha}$

$$
\begin{aligned}
& H_{0}: \mu=3 \\
& H_{1}: \mu \neq 3
\end{aligned}
$$

Rejection region is shaded

$$
\begin{aligned}
& H_{0}: \mu \leq 3 \\
& H_{1}: \mu>3
\end{aligned}
$$

Upper-tail test

\uparrow Represents critical value

Two-tail test

$H_{0}: \mu \geq 3$
$H_{1}: \mu<3$
Lower-tail test

Errors in Making Decisions

- Type I Error
- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is $\boldsymbol{\alpha}$

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions

- Type II Error
- Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual Situation	
Decision	H_{0} True	H_{0} False
Do Not Reject H_{0}	No error $(1-\alpha)$	Type II Error (β)
Reject H_{0}	Type I Error (α)	No Error $(1-\beta)$

Type I \& II Error Relationship

- Type I and Type II errors can not happen at the same time
- Type I error can only occur if H_{0} is true
- Type II error can only occur if H_{0} is false

> If Type I error probability (α) $\widehat{\mathbb{V}}$, then Type II error probability (β)

Factors Affecting Type II Error

- All else equal,
- $\quad \beta \widehat{\int}$ when the difference between hypothesized parameter and its true value \qquad
- $\beta \hat{1}$ when $\alpha \Uparrow$
- $\beta \hat{1}$ when $\sigma \hat{1}$
- β 亿when n §

Power of the Test

- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., \quad Power $=P\left(\right.$ Reject $H_{0} \mid H_{1}$ is true $)$
- Power of the test increases as the sample size increases

Hypothesis Tests for the Mean

Test of Hypothesis for the Mean (σ Known)

- Convert sample result (\bar{x}) to a z value

Decision Rule

$$
\text { Reject } H_{0} \text { if } z=\frac{\bar{x}-\mu_{0}}{\sigma}>z_{\alpha}
$$

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu>\mu_{0}
\end{aligned}
$$

Alternate rule:
Reject H_{0} if $\bar{X}>\mu_{0}+Z_{a} \sigma / \sqrt{n}$

Critical value

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample value given H_{0} is true
- Also called observed level of significance
- Smallest value of α for which H_{0} can be rejected

p-Value Approach to Testing

(continued)

- Convert sample result (e.g., \bar{x}) to test statistic (e.g., z statistic)
- Obtain the p-value
- For an upper tail test:

$$
\begin{aligned}
\mathrm{p} \text { - value } & =P\left(Z>\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}, \text { given that } H_{0} \text { is true }\right) \\
& =P\left(\left.Z>\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \right\rvert\, \mu=\mu_{0}\right)
\end{aligned}
$$

- Decision rule: compare the p -value to α
- If p-value $<\boldsymbol{\alpha}$, reject H_{0}
- If p-value $\geq \alpha$, do not reject H_{0}

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over $\$ 52$ per month. The company wishes to test this claim. (Assume $\sigma=10$ is known)

Form hypothesis test:
$\mathrm{H}_{0}: \mu \leq 52$ the average is not over $\$ 52$ per month
$\mathrm{H}_{1}: \mu>52$ the average is greater than $\$ 52$ per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

- Suppose that $\alpha=.10$ is chosen for this test

Find the rejection region:

Example: Sample Results

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: $\mathrm{n}=64, \overline{\mathrm{x}}=53.1$ ($\sigma=10$ was assumed known)

- Using the sample results,

$$
z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}=\frac{53.1-52}{\frac{10}{\sqrt{64}}}=0.88
$$

Example: Decision

Reach a decision and interpret the result:

Do not reject H_{0} since $\mathrm{z}=0.88<1.28$
i.e.: there is not sufficient evidence that the mean bill is over $\$ 52$

Example: p-Value Solution

(continued)
Calculate the p-value and compare to α
(assuming that $\mu=52.0$)

	p-value $=.1894$	
	$\begin{gathered} \text { Reject } \mathrm{H}_{0} \\ \hline \alpha=.10 \end{gathered}$	$\begin{aligned} & P(\bar{x} \geq 53.1 \mid \mu=52.0) \\ & =P\left(z \geq \frac{53.1-52.0}{10 / \sqrt{64}}\right) \end{aligned}$
$0 \xrightarrow{\text { ¢ }}$		
Do not reject H_{0}	1.28 Reject H_{0}	$=P(z \geq 0.88)=1-.8106$
$\mathrm{Z}=.88$		

Do not reject H_{0} since p -value $=.1894>\alpha=.10$

One-Tail Tests

- In many cases, the alternative hypothesis focuses on one particular direction

$$
\begin{aligned}
& H_{0}: \mu \leq 3 \\
& H_{1}: \mu>3
\end{aligned}
$$

$H_{0}: \mu \geq 3$
$H_{1}: \mu<3$

This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

This is a lower-tail test since the \Longrightarrow alternative hypothesis is focused on the lower tail below the mean of 3

Upper-Tail Tests

- There is only one critical value, since the rejection area is in only one tail

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu \leq 3 \\
& \mathrm{H}_{1}: \mu>3
\end{aligned}
$$

Critical value

Lower-Tail Tests

- There is only one critical value, since the rejection area is in only one tail

Two-Tail Tests

- In some settings, the alternative hypothesis does not specify a unique direction

$$
\begin{aligned}
& H_{0}: \mu=3 \\
& H_{1}: \mu \neq 3
\end{aligned}
$$

- There are two critical values, defining the two regions of rejection

Hypothesis Testing Example

Test the claim that the true mean \# of TV sets in US homes is equal to 3. (Assume $\sigma=0.8$)

- State the appropriate null and alternative hypotheses
- $\mathrm{H}_{0}: \mu=3, \mathrm{H}_{1}: \mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
- Suppose that $\alpha=.05$ is chosen for this test
- Choose a sample size
- Suppose a sample of size $\mathrm{n}=100$ is selected

Hypothesis Testing Example

- Determine the appropriate technique
- σ is known so this is a z test
- Set up the critical values
- For $\alpha=.05$ the critical z values are ± 1.96
- Collect the data and compute the test statistic
- Suppose the sample results are

$$
n=100, \bar{x}=2.84 \quad(\sigma=0.8 \text { is assumed known })
$$

So the test statistic is:

$$
z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}=\frac{2.84-3}{\frac{0.8}{\sqrt{100}}}=\frac{-.16}{.08}=-2.0
$$

Hypothesis Testing Example

- Is the test statistic in the rejection region?

Reject H_{0} if $z<-1.96$ or
z > 1.96; otherwise do not reject H_{0}

Here, $z=-2.0<-1.96$, so the test statistic is in the rejection region

Hypothesis Testing Example

(continued)

Reach a decision and interpret the result

Since $z=-2.0<-1.96$, we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

Example: p-Value

- Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu=3.0$?

$$
\begin{aligned}
& \bar{x}=2.84 \text { is translated to } \\
& \text { a } z \text { score of } z=-2.0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{z}<-2.0)=.0228 \\
& \mathrm{P}(\mathrm{z}>2.0)=.0228
\end{aligned}
$$

p-value

$$
=.0228+.0228=.0456
$$

Example: p-Value

- Compare the p -value with α

- If p -value $<\boldsymbol{\alpha}$, reject H_{0}
- If p-value $\geq \alpha$, do not reject H_{0}

Here: p-value $=.0456$ $\alpha=.05$

Since . 0456 < . 05 , we reject the null hypothesis

t Test of Hypothesis for the Mean (σ Unknown)

- Convert sample result ($\overline{\mathrm{x}}$) to a t test statistic

Hypothesis
Tests for μ

σ Known

σ Unknown

Consider the test

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu>\mu_{0}
\end{aligned}
$$

(Assume the population is normal)

The decision rule is:

$$
\text { Reject } H_{0} \text { if } t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}>t_{n-1, \alpha}
$$

t Test of Hypothesis for the Mean (σ Unknown)

(continued)

- For a two-tailed test:

Consider the test
$H_{0}: \mu=\mu_{0}$
$H_{1}: \mu \neq \mu_{0}$
(Assume the population is normal, and the population variance is unknown)

The decision rule is:
Reject H_{0} if $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}<-t_{n-1, \alpha / 2}$ or if $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}>t_{n-1, \alpha / 2}$

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be $\$ 168$ per night. A random sample of 25 hotels resulted in $\bar{x}=\$ 172.50$ and $\mathrm{s}=\$ 15.40$. Test at the $\alpha=0.05$ level.
(Assume the population distribution is normal)

Example Solution: Two-Tail Test

$\mathrm{H}_{0}: \mu=168$ $H_{1}: \mu \neq 168$

$\square \alpha=0.05$
■ $\mathrm{n}=25$

$\square \sigma$ is unknown, so use a t statistic

■ Critical Value:
$\mathrm{t}_{24, .025}= \pm 2.0639$
Do not reject H_{0} : not sufficient evidence that true mean cost is different than $\$ 168$

Tests of the Population Proportion

- Involves categorical variables
- Two possible outcomes
- "Success" (a certain characteristic is present)
- "Failure" (the characteristic is not present)
- Fraction or proportion of the population in the "success" category is denoted by P
- Assume sample size is large

Proportions

- Sample proportion in the success category is denoted by \hat{p}

$$
\hat{\mathrm{p}}=\frac{\mathrm{x}}{\mathrm{n}}=\frac{\text { number of successesin sample }}{\text { sample size }}
$$

- When $\mathrm{nP}(1-\mathrm{P})>5$, $\hat{\mathrm{p}}$ can be approximated by a normal distribution with mean and standard deviation

$$
\mu_{\hat{p}}=\mathrm{P}
$$

$$
\sigma_{\hat{p}}=\sqrt{\frac{\mathrm{P}(1-\mathrm{P})}{\mathrm{n}}}
$$

Hypothesis Tests for Proportions

- The sampling distribution of \hat{p} is approximately normal, so the test statistic is a z value:

$$
n P(1-P)>5
$$

Hypothesis Tests for \mathbf{P}

$$
z=\frac{\hat{p}-P_{0}}{\sqrt{\frac{P_{0}\left(1-P_{0}\right)}{n}}}
$$

Not discussed in this chapter

Example: Z Test for Proportion

A marketing company claims that it receives 8\% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha=.05$ significance level.

Check:
Our approximation for P is

$$
\hat{p}=25 / 500=.05
$$

$$
\begin{aligned}
\mathrm{nP}(1-\mathrm{P}) & =(500)(.05)(.95) \\
& =23.75>5
\end{aligned}
$$

Z Test for Proportion: Solution

$$
\begin{aligned}
& H_{0}: P=.08 \\
& H_{1}: P \neq .08
\end{aligned}
$$

$$
\alpha=.05
$$

$$
\mathrm{n}=500, \quad \hat{\mathrm{p}}=.05
$$

Critical Values: ± 1.96

Test Statistic:

$$
z=\frac{\hat{p}-P_{0}}{\sqrt{\frac{P_{0}\left(1-P_{0}\right)}{n}}}=\frac{.05-.08}{\sqrt{\frac{.08(1-.08)}{500}}}=-2.47
$$

Decision:

Reject H_{0} at $\alpha=.05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8\% response rate.

p-Value Solution

Calculate the p-value and compare to α (For a two sided test the p-value is always two sided)

Reject H_{0}	Do not reject H_{0}	Reject H_{0}	p-value = .0136:
$\alpha / 2=.025$		$\alpha / 2=.025$	
			$P(Z \leq-2.47)+P(Z \geq 2.47)$
.0068		.0068	$=2(.0068)=0.0136$
	0	6	

Reject H_{0} since p -value $=.0136<\alpha=.05$

Using PHStat

Sample PHStat Output

Power of the Test

- Recall the possible hypothesis test outcomes:

		Actual Situation	
	H_{0} True	H_{0} False	
Key: Outcome (Probability)	Decision	H_{0}	
	Do Not Reject H_{0}	No error $(1-\alpha)$	Type II Error (β)
	Reject H_{0}	Type I Error (α)	No Error $(1-\beta)$

- β denotes the probability of Type II Error
- $1-\beta$ is defined as the power of the test

$$
\begin{gathered}
\text { Power }=1-\beta=\begin{array}{c}
\text { the probability that a false null } \\
\\
\text { hypothesis is rejected }
\end{array}
\end{gathered}
$$

Type II Error (Case 1)

Assume the population is normal and the population variance is known. Consider the test

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu>\mu_{0}
\end{aligned}
$$

The decision rule is:

$$
\text { Reject } H_{0} \text { if } z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}>z_{a}
$$

$$
\text { Reject } \mathrm{H}_{0} \text { if } \overline{\mathrm{x}}>\overline{\mathrm{X}}_{\mathrm{c}}=\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}
$$

If the null hypothesis is false and the true mean is $\mu^{*}>\mu_{0}$, then the probability of type II error is

$$
\beta=P\left(\bar{x}<\bar{x}_{c} \mid \mu=\mu^{*}\right)=P\left(z<\frac{\bar{x}_{c}-\mu^{*}}{\sigma / \sqrt{n}}\right)
$$

Type II Error (Case 2)

Assume the population is normal and the population variance is known. Consider the test

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu<\mu_{0}
\end{aligned}
$$

The decision rule is:
Reject H_{0} if $\mathrm{z}=\frac{\overline{\mathrm{x}}-\mu_{0}}{\sigma / \sqrt{n}}<-z_{\alpha}$ Reject H_{0} if $\overline{\mathrm{X}}<\overline{\mathrm{X}}_{\mathrm{c}}=\mu_{0}-z_{\alpha} \frac{\sigma}{\sqrt{n}}$

If the null hypothesis is false and the true mean is $\mu^{*}<\mu_{0}$, then the probability of type II error is

$$
\beta=\mathrm{P}\left(\overline{\mathrm{x}}>\overline{\mathrm{x}}_{\mathrm{c}} \mid \mu=\mu^{*}\right)=\mathrm{P}\left(\mathrm{z}>\frac{\overline{\mathrm{x}}_{\mathrm{c}}-\mu^{*}}{\sigma / \sqrt{n}}\right)
$$

Type II Error Example

- Type II error is the probability of failing to reject a false H_{0}
Suppose we fail to reject H_{0} : $\mu \geq 52$ when in fact the true mean is $\mu^{*}=50$

Type II Error Example

- Suppose we do not reject $\mathrm{H}_{0}: ~ \mu \geq 52$ when in fact the true mean is $\mu^{*}=50$

This is the true distribution of \bar{x} if $\mu=50$	This is the range of \bar{x} where H_{0} is not rejected
50	52
Reject $H_{0}: \mu \geq 52$	Do not reject $\mathrm{H}_{0}: \mu \geq 52$

Type II Error Example

- Suppose we do not reject H_{0} : $\mu \geq 52$ when in fact the true mean is $\mu^{*}=50$

Calculating β

- Suppose $\mathrm{n}=64, \sigma=6$, and $\alpha=.05$

Calculating β

- Suppose $\mathrm{n}=64, \sigma=6$, and $\alpha=.05$

$$
\mathrm{P}\left(\overline{\mathrm{x}} \geq 50.766 \mid \mu^{*}=50\right)=\mathrm{P}\left(\mathrm{z} \geq \frac{50.766-50}{6 / \sqrt{64}}\right)=\mathrm{P}(\mathrm{z} \geq 1.02)=.5-.3461=.1539
$$

Power of the Test Example

If the true mean is $\mu^{*}=50$,

- The probability of Type II Error $=\beta=0.1539$
- The power of the test $=1-\beta=1-0.1539=0.8461$

		Actual Situation	
	Decision	H_{0} True	H_{0} False
Key: Outcome (Probability)	Do Not	No error	Type II Error
	Do Nect		
Reject H_{0}	$1-\alpha=0.95$	$\beta=0.1539$	
	Reject H_{0}	Type I Error $\alpha=0.05$	No Error $1-\beta=0.8461$

(The value of β and the power will be different for each μ^{*})

Chapter Summary

- Addressed hypothesis testing methodology
- Performed Z Test for the mean (σ known)
- Discussed critical value and p-value approaches to hypothesis testing
- Performed one-tail and two-tail tests
- Performed t test for the mean (σ unknown)
- Performed Z test for the proportion
- Discussed type II error and power of the test

