Statistics for Business and Economics 6th Edition

Chapter 9

Estimation: Additional Topics

Confidence Intervals for the Population Variance

Population Variance

- Goal: Form a confidence interval for the population variance, σ²
- The confidence interval is based on the sample variance, s²
- Assumed: the population is normally distributed

follows a chi-square distribution with (n - 1) degrees of freedom

The chi-square value $\chi^2_{n-1,\alpha}$ denotes the number for which

$$\mathsf{P}(\chi^2_{\mathsf{n}-1}>\chi^2_{\mathsf{n}-1,\,\alpha})=\alpha$$

Confidence Intervals for the Population Variance

(continued)

Population Variance

The $(1 - \alpha)$ % confidence interval for the population variance is

$$\frac{(n-1)s^2}{\chi^2_{n-1,\,\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1,\,1-\alpha/2}}$$

You are testing the speed of a computer processor. You collect the following data (in Mhz):

Assume the population is normal. Determine the 95% confidence interval for $\sigma_x{}^2$

Finding the Chi-square Values

- n = 17 so the chi-square distribution has (n 1) = 16 degrees of freedom
- α = 0.05, so use the the chi-square values with area
 0.025 in each tail:

Calculating the Confidence Limits

The 95% confidence interval is

$$\frac{(n-1)s^2}{\chi^2_{n-1, \alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}$$

$$\frac{(17-1)(74)^2}{28.85} < \sigma^2 < \frac{(17-1)(74)^2}{6.91}$$

$$3037 < \sigma^2 < 12683$$

Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

Sample PHStat Output

Data Preparation	+ ZI	↓ 📶 🚜 100% 🔹 🕐 👫 🖞 🚟 🔿				
Descriptive Statistics	•					
Decision-Making Probability & Prob. Distributions Sampling) 					
Confidence Intervals	•	Estimate for the Mean, sigma known				
Sample Size	•	Estimate for the Mean, sigma unknown				
One-Sample Tests	•	Estimate for the Population Variance				
Two-Sample Tests	•	Estimate for the Proportion				
Multiple-Sample Tests	•	Estimate for the Population Total				
Control Charts	•	Estimate for the Total Difference				
Regression	• -					
Utilities	•					
About PHStat	-					
Help for PHStat						

Statistics for Business and Economics, 6e $\ensuremath{\mathbb{C}}$ 2007 Pearson Education, Inc.

Sample PHStat Output

(continued)

Sample Size:	17
Sample Standard Deviation:	74
Confidence Level:	95 %
Output Options	
Title:	

	A	В	С	D	E
1	Confidence Interval Estimate for the Populati	on Varianc	e,		
2					
3	Data				
4	Sample Size	17		nnut	
5	Sample Standard Deviation	74		npat	
6	Confidence Level	95%			
7				6 C	
8	Intermediate Calculations	1			
9	Degrees of Freedom	16			
10	Sum of Squares	87616			
11	Single Tail Area	0.025			
12	Lower Chi-Square Value	6.907664			
13	Upper Chi-Square Value	28.84532		1. 1.	
14					
15	Results			6 C 6	
16	Interval Lower Limit for Variance	3037.442	$) \cap$	utout	
17	Interval Upper Limit for Variance	12683.88		uipui	1
18					
19	Interval Lower Limit for Standard Deviation	55.11299			
20	Interval Upper Limit for Standard Deviation	112.6227			
21				1. 1.	
22	Assumption:				
23	Population from which sample was drawn ha	s an appro	ximate n	ormal distri	bution.
24	10 No 10				